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SUMMARY

Prior to reaching the posterior pole of the
Drosophila oocyte, oskar mRNA is transla-
tionally silenced by Bruno binding to BREs
in the 30 untranslated region. The eIF4E
binding protein Cup interacts with Bruno
and inhibits oskar translation. Validating
current models, we directly demonstrate
the mechanism proposed for Cup-medi-
ated repression: inhibition of small ribo-
somal subunit recruitment to oskar mRNA.
However, 43S complex recruitment remains
inhibited in the absence of functional Cup,
uncovering a second Bruno-dependent
silencing mechanism. This mechanism in-
volves mRNA oligomerization and forma-
tion of large (50S–80S) silencing particles
that cannot be accessed by ribosomes.
Bruno-dependent mRNA oligomerization
into silencing particles emerges as a mode
of translational control that may be particu-
larly suited to coupling with mRNA trans-
port.

INTRODUCTION

Translational control of mRNA plays a central role in early de-

velopment because in most species, zygotic transcription

does not occur during the first few hours of life (reviewed in

Wickens et al., 2000). oskar mRNA encodes the posterior

determinant of Drosophila (Lehmann and Nüsslein-Volhard,

1986), Oskar protein, whose localized accumulation at the

posterior pole of the oocyte and embryo is necessary for de-

velopment of the abdomen and germline. Posterior accumu-

lation of Oskar is achieved during oogenesis, by localization
and translation of oskar mRNA at the posterior pole of the

oocyte (Ephrussi et al., 1991; Kim-Ha et al., 1991). Restric-

tion of Oskar exclusively to the posterior pole is essential,

as ectopic Oskar expression causes anterior patterning de-

fects and lethality (Ephrussi and Lehmann, 1992; Smith

et al., 1992). Translational repression of oskar mRNA prior

to localization is an essential mechanism contributing to

the restriction of Oskar activity (Kim-Ha et al., 1995; Markus-

sen et al., 1995; Rongo et al., 1995).

Repression of oskar mRNA translation prior to localization

is mediated by the RNA binding protein Bruno, which binds

to the oskar 30UTR via specific sequences, the Bruno re-

sponse elements (BREs; (Kim-Ha et al., 1995). Mutations

in the BREs that specifically reduce Bruno binding cause ec-

topic production of Oskar throughout the oocyte, indicating

that Bruno is involved in translational repression in vivo (Kim-

Ha et al., 1995; Webster et al., 1997). Direct evidence that

Bruno is a translational repressor of oskar mRNA was ob-

tained in vitro, using a Drosophila cell-free translation system

that faithfully recapitulates oskar repression (Lie and Mac-

donald, 1999; Castagnetti et al., 2000). Bruno-dependent

repression is reproduced in Drosophila ovary extract, which

contains endogenous Bruno (Kim-Ha et al., 1995). Depletion

of Bruno from this extract, using either BRE RNA competitor

or antibodies directed against Bruno, alleviates translational

repression, demonstrating a direct role of Bruno in this pro-

cess. Furthermore, addition of purified recombinant Bruno

protein to Drosophila embryo extract, which lacks endoge-

nous Bruno, causes translational repression of BRE-con-

taining mRNAs. Taken together, these experiments demon-

strated that Bruno is a bona fide translational repressor

whose activity is mediated by binding to the BREs in the

30UTR of oskar mRNA.

Recently, a eukaryotic initiation factor 4E (eIF4E) binding

protein, Cup, was shown to be required for oskar repression

and to interact with Bruno in yeast two-hybrid assays (Wil-

helm et al., 2003; Nakamura et al., 2004). eIF4E binds the

cap structure at the 50 end of mRNAs and, through interac-

tion with eIF4G, recruits the 43S preinitiation complex (con-

sisting of the small ribosomal subunit (40S), the initiator
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tRNA, GTP, and a group of initiation factors) to the mRNA (re-

viewed in Preiss and Hentze, 2003). eIF4E binding proteins

(4E-BPs) are translational repressors that block the eIF4E-

eIF4G interaction and thus inhibit recruitment of the small ri-

bosomal subunit to the mRNA (Gingras et al., 1999). As Cup

contains a functional eIF4E binding motif, it was proposed

that Cup regulates oskar translation through a mechanism

characteristic of 4E-BPs. According to this hypothesis,

Cup would be recruited by Bruno to oskar mRNA and disrupt

the interaction of eIF4E with eIF4G, thus preventing binding

of the 43S complex to the mRNA. Consistent with this, trans-

genic flies expressing a mutant Cup protein whose eIF4E

binding sequence is disrupted display defects in oskar trans-

lational regulation: Oskar protein is produced ectopically

from unlocalized oskar mRNA (Nakamura et al., 2004).

In translation, both recruitment of the 43S preinitiation

complex and the downstream initiation steps are often reg-

ulated. After binding to an mRNA, the 43S complex moves

along the 50 untranslated region (50UTR), in a process termed

scanning (Kozak, 1978, 2002), until it recognizes the initia-

tion (AUG) codon. The resulting complex is called the 48S ini-

tiation complex. Subsequently, the large ribosomal subunit

(60S) joins the 48S complex (this process requires GTP hy-

drolysis), giving rise to an 80S initiation complex competent

for elongation.

In this study, we dissect the mechanism of oskar transla-

tional control, using cell-free translation systems prepared

from Drosophila ovaries and embryos. Validating the current

model, we show that Cup-mediated repression is effected

by inhibition of small ribosomal subunit recruitment to oskar

mRNA. We also uncover that the BREs repress oskar trans-

lation through a second mechanism that is independent of

Cup-eIF4E interaction. This second mode of BRE function

involves Bruno-dependent formation of oskar mRNA oligo-

mers and assembly of ‘‘silencing particles,’’ unusually large

(50S–80S) RNP complexes that render oskar inaccessible

to the translation machinery.

RESULTS

BRE-Mediated Repression Is Recapitulated In Vitro

To investigate the mechanism of oskar mRNA regulation,

we first used a cell-free translation system prepared from

Drosophila ovaries (Lie and Macdonald, 1999; Castagnetti

et al., 2000). For this analysis, we constructed luc BRE, a re-

porter mRNA encoding firefly luciferase and, bearing in its

30UTR, the minimal oskar mRNA sequences required for

translational repression, the BREs, which bind Bruno repres-

sor present endogenously in the ovary extract (Figure 1A). A

second construct, luc BREmut, identical to luc BRE but con-

taining mutated BREs to which Bruno does not bind effi-

ciently (Kim-Ha et al., 1995) was generated as a specificity

control. As expected, luc BRE produces considerably less

protein than luc BREmut mRNA (Figure 1B). Titration of

Bruno from luc BRE by addition of BRE-containing compet-

itor RNA alleviates translational repression: luc BRE is trans-

lated more efficiently in the presence of the competitor than

in its absence (Figure 1C, red line). This effect is specific, as
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Figure 1. BRE-Mediated Translational Repression

(A) The oskar reporters. luc BRE RNA contains a vector-derived 50UTR (35

nt), the firefly luciferase coding region (1650 nt), and an oskar-derived

30UTR consisting of two copies of the BRE AB region (309 nt). luc BREmut

is similar to luc BRE but contains mutated BREs.

(B) BRE-mediated repression in the Drosophila ovary cell-free translation

system. luc BRE and luc BREmut were translated in Drosophila ovary ex-

tract, and the amount of product synthesized was estimated by measuring

luciferase activity. An equal amount of mRNA encoding Renilla luciferase

was added to each reaction, as an internal control. Firefly luciferase activity

was normalized to that of the Renilla luciferase. Values are expressed as

a percentage of luciferase produced from luc BREmut. Here and in all

other experiments, values represent the average of at least four experi-

ments. The error bars show the standard deviation.

(C) Titration of Bruno by BRE RNA competitor causes translational dere-

pression. Increasing amounts of competitor BRE-containing RNA or non-

specific RNA were added to the ovary cell-free translation extract primed

with luc BRE or luc BREmut mRNA. Reactions were analyzed as in (B). The

output was expressed as a percentage of the most productive luc BRE

translation reaction (e.g., in the presence of the optimal amount of com-

petitor BRE-containing RNA). Evaluation of the relative stability of the

mRNAs demonstrated that the difference in the amount of protein pro-

duced from luc BRE in the presence and in the absence of BRE RNA is

not due to decreased stability of the repressed RNA (data not shown).



addition of nonspecific RNA does not increase luc BRE

translation (blue line) and competitor BRE RNA does not sig-

nificantly affect translation from the mutated reporter (green

line). Thus, the oskar reporter recapitulates BRE-mediated

translational repression in ovary extract.

BREs Inhibit mRNA Association with the Small

Ribosomal Subunit

To understand the mechanism underlying Bruno-dependent

oskar mRNA control, we analyzed the translation complexes

assembled on the oskar reporter by sucrose density gradient

centrifugation. To optimize resolution, we created a shorter

version of the reporter, replacing the luciferase coding region

with a short open reading frame containing the FLAG-tag

coding sequence (FLAG BRE). To ascertain that this reporter

also recapitulates Bruno-dependent control, we translated

FLAG BRE mRNA in ovary extract in the presence of
35S-methionine, with or without added BRE RNA competi-

tor. The FLAG product was immmunoprecipitated and

quantified (Figure S1 in the Supplemental Data available

with this article online). As with the luc BRE reporter, transla-

tion of FLAG BRE increases upon titration of Bruno by the

BRE competitor.

To analyze the initiation complexes formed on FLAG BRE

mRNA in the ovary extract, we performed translation in the

presence of drugs blocking protein synthesis at defined

stages. Figure 2A shows the profiles of repressed (+ H2O;

+ nonspecific RNA) and derepressed (+ BRE RNA) mRNAs

in the presence of the cap analog m7GpppG, which seques-

ters eIF4E and thus blocks cap-dependent 43S recruitment.

Under such conditions, the mRNA cannot initiate translation

and remains as a nonribosomal RNP particle. As revealed by

this experiment, RNP particles formed on the repressed

mRNA sediment in fractions 5–14 (blue and green lines)

and, thus, are significantly heavier than RNPs assembled

on derepressed mRNA (red line, fractions 17–19). The

same light RNP peak is formed by the FLAG BREmut, which

does not bind Bruno repressor efficiently (Kim-Ha et al.,

1995; Figure 2D, fractions 17–19).

To investigate the mechanism further and to determine

whether Bruno affects association of FLAG BRE mRNA

with the small ribosomal subunit, i.e., 48S complex assem-

bly, we performed the analysis in the presence of GMP-

PNP, an unhydrolyzable analog of GTP. GMP-PNP allows

initiation to proceed to 48S complex formation and blocks

translation at this stage, as GTP hydrolysis is required for

subsequent joining of the 60S subunit (Trachsel et al.,

1977; Lee et al., 2002). In the presence of GMP-PNP, the

derepressed reporter forms a 48S peak (Figure 2B, red

line, fractions 13–14), in addition to an RNP peak (fractions

17–19). In contrast, the repressed mRNA (blue and green

lines) fails to form a 48S peak and remains exclusively in

RNP particles (fractions 5–14); its profile is identical to that

in the presence of cap analog (Figure 2A). Therefore, we con-

clude that, in the case of repressed FLAG BRE, 48S complex

assembly is inhibited.

The analogous experiment performed in the presence of

cycloheximide, a drug that allows translation to proceed to
80S complex assembly and blocks elongation, provides ad-

ditional evidence for inhibition at the initiation stage (Fig-

ure 2C). In the presence of cycloheximide, the derepressed

FLAG BRE (red line) completes initiation and forms a 80S

peak (fractions 8–9), in contrast, the repressed reporter

(blue and green lines) fails to form a 80S peak and remains

exclusively in RNP particles (fractions 5–14): its profile is

identical to that in the presence of cap analog and GMP-

PNP. Thus the BREs mediate inhibition of 48S complex as-

sembly by provoking formation of unusually heavy mRNPs

(50S–80S), which we refer to as ‘‘silencing particles.’’

To directly assess the role of Bruno in oskar mRNA regu-

lation, we repeated this analysis in Drosophila embryo ex-

tract (Gebauer et al., 1999), which lacks Bruno repressor

(Webster et al., 1997; Castagnetti et al., 2000). Bruno protein

supplemented to the embryo extract causes formation of

heavy RNPs and represses 48S complex assembly, reveal-

ing the pivotal role of Bruno in the mechanism of BRE-medi-

ated repression (see Supplemental Data and Figure S2).

BREs Mediate Translational Repression via

Two Distinct Mechanisms that Differ in Their

Requirement for the Cup-eIF4E Interaction

According to the model proposed by Nakamura et al. (2004),

oskar mRNA translation is repressed at 43S recruitment, via

a trimeric Bruno-Cup-eIF4E interaction. Our data are consis-

tent with this model, and we decided to test it directly by per-

forming in vitro translation in ovary extract prepared from cup

mutant flies. cupD212 produces a truncated Cup, in which the

eIF4E binding motif is disrupted and the Cup-eIF4E inter-

action abolished (Nakamura et al., 2004). Hence, Bruno-

mediated repression should not occur in cupD212 extact.

Surprisingly, when translated in cupD212 extract, luc BRE

is derepressed upon addition of BRE competitor RNA (Fig-

ure 3A, solid red line). This effect is specific, as nonspecific

RNA does not alleviate repression of luc BRE (blue line),

and translation of luc BREmut is essentially unaffected by

addition of BRE competitor (green line). Thus, the BREs me-

diate translational repression even in the absence of Cup-

eIF4E interaction. However, repression is not as strong in

cupD212 extract as in wild-type extract. Indeed, in cupD212

extract, translation of luc BRE increases only about 2-fold

upon addition of the competitor BRE RNA (Figure 3A, solid

red line), whereas in wild-type extract, translation of luc

BRE is stimulated around 4-fold in the presence of BRE

competitor (dashed red line). We therefore conclude that

the BREs effect repression through at least two distinct

mechanisms—one Cup-eIF4E-dependent and one Cup-

eIF4E-independent.

48S Complex Formation Is Inhibited even

in the Absence of the Cup-eIF4E Interaction

To investigate the Cup-eIF4E independent mechanism of

translational repression, we analyzed the initiation com-

plexes formed on FLAG BRE mRNA in cupD212 extract

with or without BRE competitor. Sucrose density gradient

analysis analogous to that previously described for the

wild-type extract revealed that in cupD212 extract, repressed
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Figure 2. BREs Repress 48S Initiation Complex Formation

(A) BREs mediate involvement of repressed mRNA into unusually heavy RNP complexes. Radioactively labeled FLAG BRE (A–C) or FLAG BREmut (D)

mRNA was incubated in the Drosophila ovary cell-free translation system in the presence of cap analog m7GpppG and either competitor BRE RNA (red

line), nonspecific RNA (blue line), or H2O (green line). After incubation, the translation mixture was loaded on a 15%–35% sucrose density gradient, centri-

fuged, and fractions collected. The radioactivity in each fraction was measured and is represented as a percentage of total recovered counts plotted against

the fraction number. The absorbance of each fraction at 260 nm was also measured to reveal the position of monoribosome peak (black dashed line).

(B) BREs repress 48S complex formation. The assay was performed as in (A) but with addition of GMP-PNP.

(C) BREs repress translation at initiation. The assay was performed as in (A) but with addition of cycloheximide.

(D) FLAG BREmut mRNA is not involved in silencing particles. Assay performed as in (A) but with FLAG BREmut mRNA.
FLAG BRE is detected in heavy RNPs (Figure 3B,

+ m7GpppG, blue and green lines), as it is in the wild-type ex-

tract (Figure 2A). The repressed reporter (Figures 3C and 3D,

blue and green lines) is less efficient than the derepressed
524 Cell 124, 521–533, February 10, 2006 ª2006 Elsevier Inc.
FLAG BRE (red line) in both 48S (Figure 3C, + GMP-PNP)

and 80S complex assembly (Figure 3D, + cycloheximide).

Thus, stable association of oskar mRNA with the small ribo-

somal subunit is inhibited independently of the Cup-eIF4E



Figure 3. BREs Can Repress Association of oskar with the Small Ribosomal Subunit in the Absence of Cup-eIF4E Interaction

(A) Increasing amounts of competitor BRE-containing RNA or nonspecific RNA were added to the cupD212 Drosophila ovary cell-free translation system

primed with luc BRE or luc BREmut mRNA. The assay was performed as in Figure 1C but in cupD212 extract instead of wild-type extract.

(B) BREs repress translation at initiation even in the absence of Cup-eIF4E interaction. The assay was performed as in Figure 2A but in cupD212 extract

instead of wild-type extract.

(C) BREs repress 48S complex formation even in the absence of Cup-eIF4E interaction. The assay was performed as in (A) but with addition of GMP-PNP.

(D) BREs mediate assembly of mRNA into unusually heavy RNP complexes even in the absence of Cup-eIF4E interaction. The assay was performed as in (B)

but with addition of cycloheximide.

The error bars show standard deviation.
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Figure 4. BREs Can Repress Translation Independently of the Cap Structure

(A) luc BRE reporter bearing either an ApppG or a m7GpppG cap was translated in cupD212 Drosophila ovary cell-free system in the presence of increasing

amounts of the competitor BRE RNA or nonspecific RNA. The reactions were analyzed as in Figure 1C.

(B) The assay was performed as described in (A) but using wild-type extract instead of cupD212 extract.

The error bars show standard deviation.
interaction. Likewise, the formation of heavy silencing parti-

cles is independent of the Cup-eIF4E interaction.

A Differential Requirement for the m7GpppG Cap

in the Two Mechanisms of BRE-Mediated

Translational Repression

To further investigate the Cup-eIF4E-independent repres-

sion mechanism, we analyzed its dependence on a

m7GpppG cap. We assessed translational repression of

a luc BRE mRNA bearing at its 50 end an ApppG structure,

a cap analog that fails to bind eIF4E. As expected, luc BRE

mRNA bearing an ApppG cap (Appp-luc BRE) is translated

about 10 times less efficiently than luc BRE bearing the ca-

nonical m7GpppG cap (data not shown). Interestingly, in

cupD212 ovary extract, Appp-luc BRE and m7Gppp-luc

BRE are derepressed by addition of competitor BRE RNA,

with almost identical response curves (Figure 4A, compare

solid and dashed red lines). We therefore conclude that

this Cup-eIF4E-independent repression mechanism also

functions independently of the physiological cap structure.

This Cup-eIF4E-independent mechanism can explain the

observation of Lie and Macdonald (1999) that BRE-medi-

ated repression occurs even in the presence of saturating

amounts of m7GpppG sequestering eIF4E.

Importantly, in wild-type extract, in addition to effecting re-

pression via a Cup-eIF4E- and cap-independent mecha-

nism, BREs also exert their repressive effect via a second

mechanism that requires interaction of Cup and eIF4E (see
526 Cell 124, 521–533, February 10, 2006 ª2006 Elsevier Inc.
Figure 4). To test the requirement of a cap for the Cup-

eIF4E-dependent mechanism, we compared translational

repression of m7Gppp-luc BRE and Appp-luc BRE RNAs

in wild-type ovary extract. Interestingly, the degree of trans-

lational derepression achieved by addition of BRE competi-

tor is significantly greater for m7Gppp-luc BRE mRNA than

for Appp-luc BRE mRNA in wild-type extract (Figure 4B,

compare dashed with solid red line). As predicted, the sec-

ond, Cup-eIF4E-dependent repression mechanism requires

a m7GpppG cap. Taken together, our results show there

are at least two separate mechanisms underlying BRE-

dependent translational repression: one is cap- and Cup-

eIF4E-dependent and the other is cap- and Cup-eIF4E-

independent.

Bruno-Dependent mRNA Oligomerization

into Silencing Particles

The unusually large size of the oskar silencing particles led us

to hypothesize that such particles might be formed by the as-

sociation of several mRNA molecules. To test this possibility,

we tagged the FLAG BRE reporter with the boxB RNA se-

quence tag, which binds lN peptide, and primed ovarian

in vitro translation reactions with a mixture of radiolabeled

FLAG BRE and FLAG BRE boxB-tagged mRNAs. We then

isolated the complexes formed on FLAG BRE-boxB mRNA

by binding to a lN-GST fusion protein (GRNA chromatogra-

phy, Czaplinski et al., 2005). RNAs contained in the com-

plexes were separated on a denaturing polyacrylamide gel



Figure 5. Repressed Complexes Contain

RNA Multimers

(A) A mixture of radiolabeled FLAG BRE and

FLAG BRE-boxB mRNAs was translated in

Drosophila ovary extract in the presence of

m7GpppG cap with and without competitor

BRE RNA. The complexes formed on FLAG

BRE-boxB mRNA were isolated by GRNA chro-

matography (Czaplinski et al., 2005), and RNAs

contained in the complexes were separated on

a denaturing 4% polyacrylamide gel and ana-

lyzed by autoradiography. RNA recovered from

the translation reaction in the absence of BRE

RNA competitor (lane 1), in the presence of non-

specific RNA (lane 2); in the presence of BRE

RNA (lane 3). Lanes 4 and 5: RNA recovered

from the reactions primed with FLAG BREmut-

boxB and FLAG BREmut, in the presence of non-

specific RNA (lane 4) or BRE RNA (lane 5). Lane

6: RNA recovered from the Drosophila embryo

in vitro translation reaction primed with FLAG

BRE and FLAG BRE-boxB. Nonspecific (boxB-

independent) binding was estimated by GRNA

chromatography of reactions primed exclusively

with FLAG BRE (lane 7) or FLAG BREmut (lane

8). The amount of loaded material was normal-

ized to the amount of recovered FLAG BRE-

boxB (lanes 1–3 and 6) or FLAG BREmut-boxB

(lanes 4 and 5). Lanes 7 and 8 contain all recov-

ered RNA. Lanes 9–12 show RNA input: 1/5 of

the total FLAG BRE-boxB and FLAG BREmut-

boxB added to the reactions (lanes 9 and 10, re-

spectively); 1/30 of the total FLAG BRE and FLAG

BREmut in the translation mixture (lanes 11 and

12, respectively). Here and in all subsequent

figures radiolabeled RNAs are indicated with an

asterisk.

(B) A mixture of radiolabeled FLAG BRE and

FLAG BRE-boxB mRNAs was incubated with

or without recombinant Bruno. Complexes

formed on FLAG BRE-boxB mRNA were isolated and analyzed as in (A). RNA recovered in the absence of Bruno (lane 1); upon Bruno addition (lane 2);

after titration of Bruno with BRE RNA (lane 3); in the presence of BRE RNA but in the absence of Bruno (lane 4); in the presence of Bruno and nonspecific

RNA (a fragment of FLAG BRE RNA upstream of the BRE sequences; lane 5). Lanes 6–9: RNA recovered from reactions primed with FLAG BRE-boxB and

FLAG BREmut, without Bruno (lane 6), in the presence of Bruno (lane 7), in the presence of both Bruno and BRE RNA (lane 8), in the presence of Bruno and

nonspecific RNA (lane 9). Lanes 10–13 represent analogous experiments with FLAG BREmut-boxB and FLAG BRE RNAs. Estimations of nonspecific bind-

ing (lanes 14 and 15) and normalizations are as in (A).
and analyzed by autoradiography (Figure 5A). This analysis

shows that complexes formed on translationally repressed

FLAG BRE-boxB mRNA also contain the untagged FLAG

BRE mRNA (lanes 1 and 2). Hence, oskar silencing particles

are indeed formed of mRNA oligomers. Consistent with our

observation that heavy silencing particles do not form on

FLAG BRE mRNA that is translationally derepressed by ad-

dition of the competitor BRE RNA (Figure 2C, + BRE RNA),

no oligomerization is observed in the case of derepressed

FLAG mRNA (Figure 5A, lane 3). Oligomerization of transla-

tionally repressed FLAG BRE mRNAs is specifically medi-

ated by the BREs, as equivalent mRNAs in which the

BREs were mutated (FLAG BREmut and FLAG BREmut-

boxB) fail to oligomerize (lanes 4 and 5). No oligomerization

of FLAG BRE and FLAG BRE-boxB is observed when the

mRNAs are translated in the embryo extract (lane 6), which

lacks Bruno protein. The fact that FLAG BRE mRNA oligo-
merization is BRE-dependent in the ovary extract and was

not observed in embryo extract suggests that, as is the

case for translational repression, FLAG BRE mRNA oligo-

merization in silencing particles might be mediated by Bruno

protein.

To determine if Bruno might be directly responsible for the

observed oligomerization of BRE-containing mRNA in si-

lencing particles, we tested whether purified recombinant

Bruno protein causes BRE-containing RNAs to oligomerize

(Figure 5B). A mixture of radiolabeled FLAG BRE and

FLAG BRE-boxB mRNAs was incubated in the absence or

in the presence of recombinant Bruno. Complexes formed

on FLAG BRE-boxB mRNA were then isolated by GRNA

chromatography and RNAs contained in the complexes an-

alyzed by PAGE and autoradiography. While in the absence

of Bruno, no untagged FLAG BRE is recovered (lane 1); upon

Bruno addition, FLAG BRE is present in complexes formed
Cell 124, 521–533, February 10, 2006 ª2006 Elsevier Inc. 527



on FLAG BRE-boxB (lane 2). No mRNA oligomerization is

observed when Bruno is titrated by BRE RNA competitor

(lane 3). Furthermore, addition of nonspecific competitor

RNA does not prevent mRNA oligomerization in the pres-

ence of Bruno (lane 5). The lower recovery of FLAG BRE

RNA oligomers in the presence of recombinant Bruno alone

(Figure 5B, lanes 2 and 5) than in crude Drosophila ovary ex-

tract (Figure 5A, lanes 1–3) supports the notion that addi-

tional factors present in the ovary extract might be required

for a high efficiency of mRNA oligomerization. Consistent

with this, the silencing particles formed in embryo extract

upon addition of recombinant Bruno are not as large as

those formed in ovary extract (Figures 2A, 3B, and S2C).

To simultaneously confirm both the Bruno dependence

and the RNA specificity of FLAG-BRE oligomerization, we

tested the ability of Bruno to oligomerize FLAG BREmut

and FLAG BREmut-boxB, RNAs containing mutated BREs

to which Bruno does not bind efficiently (Kim-Ha et al.,

1995). Consistent with our previous results, minimal com-

plex formation is observed when one of the interacting

RNAs, either FLAG BRE or FLAG BRE-boxB, is substituted

with the mutated version, FLAG BREmut or FLAG BREmut-

boxB (Figure 5B, lanes 6–13). Hence, the oligomerizing

effect of Bruno on BRE-containing RNA is both direct and

specific.

To confirm that mRNA oligomerization occurs specifically

in the silencing particles, we fractionated translation mixtures

by centrifugation in sucrose density gradients, isolated si-

lencing particles by GRNA chromatography (see Figure 2A,

fraction 9–11), and analyzed their RNA content as described

above. Indeed, oligomerization is highly efficient in the silenc-

ing particles (Figure 6A, lane 4), contrary to the low efficiency

of oligomerization (Figure 6A, lane 5) in the light RNP peak

(see Figure 2A, fractions 17–19). No significant oligomeriza-

tion is observed when Bruno is depleted by addition of BRE

RNA or when mutated reporters (FLAG BREmut and FLAG

BREmut-boxB) are used (lanes 6–9). Interestingly, the trace

amounts of oligomerization of depressed mRNA that can be

detected upon long exposure are restricted to fractions 9–11

(Figure 6A, lanes 6 and 8, and data not shown), suggesting

a causal link between mRNA oligomerization and the large

size of RNP particles formed by the oligomerized mRNAs.

Silencing Particles Contain Bruno, Cup, and Me31B

To characterize the protein content of the silencing particles,

we primed the ovary cell-free system with FLAG BRE-boxB

mRNA, in the presence or absence of excess BRE RNA,

fractionated the mixtures on sucrose density gradients,

and recovered RNA and associated proteins by GRNA chro-

matography for further analysis. Western blotting revealed

that Bruno protein is selectively associated with the re-

pressed mRNA and is present both in silencing particles

and in the lighter RNP peak (Figure 6B, lanes 1 and 2). There-

fore, the lighter RNP peak (fractions 17–19) might represent

an intermediate complex in silencing particle assembly, in

which mRNA is bound to Bruno but not yet oligomerized.

Cup is detected only in the heavy but not in the lighter RNP

peak of the repressed mRNA (Figure 6B, lane 1), suggesting
528 Cell 124, 521–533, February 10, 2006 ª2006 Elsevier Inc.
that silencing particles may also play a role in Cup-depen-

dent repression. The fact that Bruno does not recruit Cup

in the lighter RNP peak suggests that effectors may exist

that regulate this interaction and cause RNP transition to si-

lencing particles.

Me31B, which has been implicated in translational regula-

tion of oskar mRNA during early oogenesis (Nakamura et al.,

2001) and is a homolog of the S. cerevisiae P body compo-

nent and translational repressor Dhh1p (Coller and Parker,

2005), is also associated exclusively with the repressed

mRNA and is detected in both the light and heavy RNP

peaks (Figure 6B, lanes 1 and 2). Taken together, these

data show that all three oskar translational repressors,

Bruno, Cup, and Me31B are specifically associated with

the repressed mRNA.

DISCUSSION

Tight restriction of Oskar protein to the posterior pole of the

Drosophila oocyte is crucial for development of the future

embryo and is largely achieved by posterior localization of

oskar mRNA and its translational inhibition prior to localiza-

tion. Our molecular analysis of oskar mRNA translational re-

pression and of the relative roles of Bruno and Cup in this

process has demonstrated the existence of two distinct

modes of repression by Bruno and their mechanistic basis.

We have demonstrated directly the mechanism hypothe-

sized for Bruno/Cup function, whereby cap-dependent

43S complex recruitment is inhibited (Wilhelm et al., 2003;

Nakamura et al., 2004). We have also discovered that Bruno

exerts its function through a second mechanism that does

not require functional Cup and its interaction with eIF4E.

This mode of repression involves Bruno-dependent oskar

mRNA oligomerization and assembly into silencing particles,

unusually large RNPs in which oskar remains inaccessible to

the translation machinery.

Bruno Is a Dual Regulator of oskar Translation

Our analysis of ribosomal complexes assembled on oskar re-

porter mRNA in vitro revealed that 48S initiation complex for-

mation is inhibited both in the presence and in the absence

of Cup-eIF4E interaction. This result is compatible with either

of two possible mechanisms: (1) inhibition of small ribosomal

subunit recruitment and (2) blocking of the following step—

scanning of the 50UTR by the small ribosomal subunit. In-

deed, such scanning complexes in which the 43S subunit

moves along the mRNA searching for the initiation codon

are not stable and can easily dissociate during centrifugation

in the sucrose density gradient (Pestova et al., 1998; Beck-

mann et al., 2005). Therefore, as with a failure in recruitment

of the small ribosomal subunit, interfering with scanning

would also result in a reduction of the 48S peak.

The first of the two oskar repression mechanisms requires

the interaction of Cup and eIF4E. This Cup-dependent

repression process also requires a m7GpppN cap on the

mRNA (Figure 4). As binding of the small ribosomal subunit

represents the cap-dependent step in translation initiation,

our results provide a direct demonstration of the



Figure 6. oskar Silencing Particles Are Composed of mRNA Oligomers and Contain Bruno, Cup, and Me31B

(A) mRNA oligomerization is specific to silencing particles. Lanes 1–3: RNAs and experimental procedure as in Figure 5A, lanes 2–4. Lanes 4–9: reactions

shown in lanes 1–3 were fractionated by centrifugation in sucrose density gradients (as in Figure 2), and complexes assembled on boxB-tagged RNA were

isolated from fractions 9–11 and fractions 17–19 by GRNA chromatography. RNA content was analyzed as in Figure 5A. Lanes 4 and 5 contain RNAs from

a reaction assembled in the presence of nonspecific RNA and recovered from fractions 9–11 (lane 4) and 17–19 (lane 5). Lanes 6 and 7: RNAs from a re-

action assembled in the presence of BRE RNA and recovered from fractions 9–11 (lane 6) and 17–19 (lane 7). Lanes 8 and 9: analogous fractionation of

reactions containing FLAG BREmut and FLAG BREmut-boxB RNAs. Lanes 10–12: 1/3 of total RNA present in the translation reactions shown in lanes 1–3,

prior to GRNA chromatography. All lanes show same gel, with the pairs of lanes 4 and 5, 6 and 7, and 8 and 9 flipped to show heavy and light fractions on left

and right, respectively. Lanes 1–3 and 10–12 are shorter exposures of the same gel.

(B) Protein composition of the silencing particles. Radiolabeled FLAG BRE-boxB or FLAG BREmut-boxB mRNA was translated in Drosophila ovary extract

in the presence of cycloheximide, with or without competitor BRE RNA. The reactions were fractionated on sucrose density gradients as in (A), and com-

plexes were isolated by GRNA chromatography and processed for Western blot analysis of Bruno, Cup, and Me31B. Lanes 1–6 correspond to lanes 4–9 in

(A), with the exception that no untagged mRNA was included in the reactions. The amount of loaded material was normalized to the amount of recovered

FLAG BRE-boxB or FLAG BREmut-boxB mRNA. As in (A), the pairs of lanes 1 and 2, 3 and 4, and 5 and 6 were flipped to show heavy and light fractions on

left and right, respectively.
hypothesized mechanism for Cup regulation of oskar mRNA

(Nakamura et al., 2004): a block of cap-dependent 43S re-

cruitment mediated by a functional interaction between

Cup-eIF4E and Bruno. Interestingly, we observed that Cup

recruits eIF4E to the mRNA in a cap-independent manner

suggesting an unexpected role for Cup, over and beyond

its role in translational repression (Figure S3). Recruitment

of eIF4E to oskar mRNA complexes by Cup might ensure co-
localization and local enrichment of this otherwise limiting

translation factor at the posterior pole, where oskar mRNA

is translationally activated.

The second mechanism of oskar regulation revealed by

our analysis also involves Bruno but requires neither Cup-

eIF4E interaction nor a m7GpppN cap. It is therefore unlikely

that this mechanism directly interferes with cap-dependent

recruitment of the 43S complex.
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Cup-eIF4E-Independent Translational

Control Involves Formation of Heavy RNPs

and mRNA Oligomerization

Our analysis shows that repressed oskar reporter mRNA

forms unusually heavy complexes sedimenting between

the 48S and 80S peaks (Figures 2A–2C and 3B–3D, green

and blue lines). Importantly, these complexes form in the ab-

sence of the Cup-eIF4E interaction and of ribosomal subunit

binding, as revealed by their persistence upon addition of

cap analog. We therefore propose that oskar mRNA is se-

questered in such large RNP complexes and hence inacces-

sible to the 43S preinitiation complex. Consistent with such

a sequestration hypothesis, the repressed mRNA is selec-

tively protected from the degradation machinery (see Sup-

plemental Data and Figure S4). Interestingly, a model of

‘‘masked’’ (translationally inactive, stable) mRNAs was put

forward 40 years ago (Spirin, 1966). Masking factors were

proposed to bind to mRNA and promote aggregation into

higher-order condensed particles, protected from any pro-

cessive events, including translation, degradation and poly-

adenylation/deadenylation (Spirin, 1994).

Our experiments reveal that assembly of oskar mRNA into

RNP complexes as large as monoribosomes can occur with-

out any involvement of the RNA with the ribosomal subunits.

These findings shed an unexpected light onto the published

literature, where complexes of 80S and larger can be intui-

tively taken as an indication of ribosomal association and

translation elongation. Based on the cosedimentation of

oskar mRNA with polysomes and experiments involving

the polysome-disrupting agent puromycin, Braat et al.

(2004) concluded that in the ovary, repressed oskar mRNA

is associated with translating ribosomes. Our data challenge

this conclusion, because we show directly that heavy RNPs

(up to 80S in vitro) can form on oskar reporter mRNA without

ribosomal subunit binding. We note that Braat et al. (2004)

employed experimental conditions in which more than one

variable was simultaneously changed. Specifically, the

Mg2+ concentration, which can affect both polysome and

RNP stability, differed by an order of magnitude between

the puromycin-treated samples (2.5 mM Mg2+) and the cy-

cloheximide control (25 mM Mg2+). We have repeated this

experiment, altering only one variable (puromycin). When

the Mg2+ concentration is kept constant, puromycin does

not affect the heavy RNPs that were previously interpreted

as being ‘‘polysomal’’ (M.C., unpublished data). We suggest

that oskar mRNA is engaged in puromycin-insensitive, heavy

silencing particles that are sequestered from ribosomal en-

gagement and that cosediment with polysomes.

Remarkably, oskar silencing particles comprise not single

mRNA molecules but mRNA oligomers, whose formation is

dependent on the specific association of Bruno with the

BREs (Figures 5 and 6). The fact that the same components,

Bruno and BREs, are responsible for both translational re-

pression and mRNA oligomerization into silencing particles

suggests a causal relationship between oligomerization

and translational silencing.

The interesting finding that Cup is present in the heavy but

not in the light RNP peak highlights the role of silencing par-
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ticles in oskar repression. The sucrose gradient analysis of

repressed complexes in cupD212 extract (Figure 3) demon-

strates that Cup-4E interaction is not required for silencing

particle formation. However, the fact that Cup is exclusively

associated with the silencing particles but not with the light

RNP peak of repressed mRNA (Figure 6B) suggests that par-

ticle formation may contribute not only to Cup-independent

repression but also to Cup-dependent repression.

mRNA Oligomerization as Mechanism Coupling

Translational Control with mRNA Localization

Consistent with our in vitro demonstration of oskar mRNA

multimerization in silencing particles, it was recently demon-

strated that oskar mRNA molecules can self-associate

through the 30UTR for localization to the posterior pole of

the oocyte (Hachet and Ephrussi, 2004). As oskar mRNA is

translationally repressed prior to posterior localization, it is

tempting to speculate that the large silencing complexes

containing oskar mRNA multimers we have identified are re-

lated to oskar mRNA localization complexes. It should be

noted, however, that at present, there is no evidence for a

role of the translational repressor Bruno in oskar mRNA local-

ization. It is also possible that direct intermolecular RNA-RNA

interactions might contribute to oskar oligomerization, as in

the case of bicoid mRNA (Ferrandon et al., 1997; Wagner

et al., 2001).

Our work suggests that silencing particles in Drosophila

ovary extracts form by Bruno-mediated mRNA oligomeriza-

tion from lower complexity precursors (Figure 2A, fractions

17–19). Recent reports have described the presence in

yeast and in mammalian cells of large particles, P bodies,

from which silenced mRNAs may either return to the translat-

ing pool or be targeted for degradation (Coller and Parker,

2005; Brengues et al., 2005). There, also, the idea has

emerged of RNP particles that may aggregate from precur-

sors into higher-order structures. In this regard, it is notable

that both Cup and Me31B are present in silencing particles,

as it has recently been shown that the mammalian eIF4E

binding protein, 4E-T, and Dhh1p, the S. cerevisiae homolog

of Me31B, are P body components (Ferraiuolo et al., 2005;

Teixeira et al., 2005). While the factors that promote P

body aggregation in mammals and yeast are currently un-

known, we have identified Bruno as a critical factor for silenc-

ing particle formation. Interestingly, our analysis shows that

while Bruno is associated with the repressed mRNA both

in silencing particles and lighter RNPs, Cup associates only

with the mRNA in silencing particles (Figure 6B). The fact

that Bruno does not recruit Cup in the light RNP peak sug-

gests that effectors may exist that regulate this interaction

and cause RNP transition to silencing particles by addition/

modification of factors and/or conformational change. It

will be interesting to further explore the relationship between

silencing particles and P bodies.

The exciting finding that oskar silencing particles comprise

not single mRNA molecules, but mRNA multimers, suggests

a mode of mRNA translational control that seems particularly

suited to coupling of translational repression with mRNA

transport within the cell. Such a repression mechanism



would also allow coordinate repression of multiple oskar

mRNAs, as well as coordinate derepression of the mRNAs

within the silencing mRNP, upon its localization at the oocyte

posterior pole. The particles could in principle contain other

RNAs regulated and assembled into RNPs by common

components. It will be interesting to determine if gurken

mRNA, which is translationally repressed by Bruno (but not

Cup) and colocalizes with oskar mRNA during the early

stages of oogenesis, is coassembled with oskar mRNA in

silencing particles.

EXPERIMENTAL PROCEDURES

Plasmids

luc BRE, luc BREmut, FLAG BRE, FLAG BREmut, FLAG BRE-boxB, and

FLAG BREmut-boxB were created in several steps. A BglII-BclI fragment

containing the AB BRE region (EcoRI-DraI fragment) of the oskar 30UTR

was generated by PCR and cloned into pCRII-TOPO. This plasmid was

digested with BglII and BclI, and one or two copies of the BRE region

were cloned into the BamHI site of pGEM4, yielding pGem-BRE and

pGem-BRE2X. An XmaI-PstI BRE-containing fragment was excised

from pGem-BRE2X and cloned into the XmaI-PstI sites of a pBluescript

plasmid, adjacent to a PstI-HindIII fragment bearing a 150A sequence,

generating pBluescript-BRE-150A. The BRE-150A sequence of this plas-

mid was the source of 30UTR for the final luc BRE and FLAG BRE re-

porters. To generate the 30UTR for the FLAG BRE-boxB construct, we

cloned a fragment containing three copies of the boxB sequence

(Baron-Benhamou et al., 2004) between XbaI and PstI sites of pGem-

BRE2X, yielding pGem-BRE-boxB. Further cloning steps for FLAG

BRE-boxB were the same as for the FLAG BRE construct. To create a mu-

tated version of the 30UTR, we followed the same cloning strategy but

used ABmut (Kim-Ha et al., 1995) as the PCR template, generating

pBluescript-BREmut-150A.

To generate pSP72-luc, we cloned the luciferase coding sequence be-

tween the XhoI and BamHI sites of pSp72. We then inserted the XmaI-

KpnI BRE-150A-containing fragment of pBluescript-BRE-150A into the

XmaI-KpnI site of pSP72-luc. Finally, the XhoI-HindIII luc-AB-150A-con-

taining fragment of the resulting plasmid was subcloned into pBluescript

to create luc BRE. The same strategy was used to generate luc BREmut

using pBluescript-BREmut-150A as a 30UTR source. To generate

pSP72-FLAG, most of the luciferase coding sequence was released by

digestion with XhoI and EcoNI and was replaced by an XhoI-EcoNI frag-

ment containing the FLAG coding sequence. The fragment bearing the

FLAG-tag sequence was generated by PCR using WTs as a template

(Gebauer et al., 2003). Further steps in generation of FLAG BRE, including

ligation of the 30UTR and subcloning into pBluescript, were the same as

for the luc BRE construct.

pETM82-Bruno, a plasmid encoding recombinant Bruno, fused to the

leaderless sequence of DsbC (a subunit of protein disulfide isomerase/

disulfide oxidoreductase) and a His-tag, was generated by cloning the

Bruno coding sequence between the NcoI and KpnI sites of the

pETM82 vector (G. Stier, EMBL).

In Vitro Transcription and Translation

All mRNAs, luc BRE, luc BREmut, FLAG BRE, FLAG BREmut, FLAG

BRE-boxB, and FLAG BREmut-boxB, were generated using a T3 Maxi-

script in vitro transcription kit (Ambion 1316). The plasmids were linear-

ized using HindIII. Either m7GpppG or ApppG was added to the reaction

(3.5 mM final). To prepare radiolabeled FLAG BRE and FLAG BRE-B

mRNAs for sucrose density gradient analysis, we supplemented the

in vitro transcription reaction with 3.75 mM 32P-UTP (�800 Ci/mmol,

20 mCi/ml, Amersham, PB20383-1MCI). For GRNA chromatography ex-

periments, in which both FLAG BRE and FLAG BRE-boxB mRNAs were

used to prime cell-free translation, FLAG BRE mRNA was radiolabeled by
addition of 11.25 mM 32P-UTP (�800 Ci/mmol, 20mCi/ml, Amersham

PB20383-1MCI) to the in vitro transcription reaction.

Competitor BRE-containing RNA (BRE RNA) was produced by tran-

scription of pGem-BRE after linearization by XbaI, using an SP6 Mega-

script in vitro transcription kit (Ambion 1330). Nonspecific RNA of a size

similar to BRE RNA was generated by in vitro transcription (T3 Mega-

script, Ambion 1338) of FLAG BRE linearized using BamHI. All RNAs

were purified using an RNeasy Mini kit (Qiagen 74104).

Preparation of Drosophila ovary and embryo extracts and in vitro trans-

lation assays were performed as previously described (Gebauer et al.,

1999; Castagnetti et al., 2000). Translation reactions contained 1.5 nM

exogenous mRNA, except in the case of CAT mRNA, which was used

at a concentration of 0.3 nM. Unless otherwise stated, BRE RNA and

nonspecific RNA were used at a concentration of 800 nM, and Bruno

at a concentration of 150 nM. Recombinant Bruno was produced in

E. coli by A. De Marco in the EMBL Protein Purification Facility (details

available upon request).

Sucrose Density Gradient Analysis

For analysis of the translation complexes assembled on radiolabeled

FLAG BRE RNA, cell-free translation was performed in a volume of

15 ml and incubated at 25ºC for 30 min. Reactions contained cyclohexi-

mide (2 mM) and where indicated, GMP-PNP (2 mM) or m7GpppG

(1 mM). Mg(OAc)2 (2 mM) was supplemented to reactions containing

GMP-PNP. Following incubation, translation mixtures were cooled on

ice, clarified by centrifugation at 10,000 � g for 15 min at 4ºC and loaded

on a 15%–35% sucrose gradient (24 mM HEPES [pH 7.4], 3 mM

Mg(OAc)2, 100 mM KOAc, 2 mM DTT). Centrifugation was performed

at 45,000 rpm 4ºC in a SW-60 rotor; the run time was 3 hr, 15 min for

ovary translation system and 15 min longer for embryo translation system.

Fractions of the gradient were collected manually from the top, and radio-

activity in the fractions was estimated by scintillation counting.

mRNA Oligomerization Assay

Oligomerization of BRE-containing mRNAs was evaluated in two different

assays: (1) in the Drosophila ovary cell-free translation system; (2) using

purified recombinant Bruno. The cell-free translation system from Dro-

sophila ovaries (Castagnetti et al., 2000) was assembled in a volume of

30 ml in the presence of 1 mM m7GpppG and primed with the radiolabeled

mRNAs: 1.2 nM FLAG BRE (or FLAG BREmut) and 0.3 nM FLAG BRE-

boxB (or FLAG BREmut-boxB). Where indicated, BRE RNA or nonspe-

cific RNA were added at a final concentration of 800 nM and preincubated

in ovary extract for 10 min at 4ºC. The assembled in vitro translation mix-

ture was incubated at 25ºC for 30 min, then subjected to GRNA chroma-

tography. In Figure 6A, 100 ml of the mixtures were fractionated on

sucrose density gradients and selected fractions were subjected to GRNA

chromatography.

The assay involving recombinant Bruno was performed in a 30 ml vol-

ume containing 25 mM Hepes-KOH (pH 7.4), 1.5 mM MgCl2, 150 mM

NaCl, 0.3 mg/ml tRNA (Sigma R-5636), and 0.2 U/ml Ribonuclease Inhib-

itor (Promega 2515). The reaction was primed with the radiolabeled

mRNAs: 1.2 nM FLAG BRE (or FLAG BREmut) and 0.3 nM FLAG BRE-

boxB (or FLAG BREmut-boxB) and incubated for 30 min at 25ºC prior

to GRNA chromatography. Where indicated, 150 nM recombinant Bruno

was added to the reaction; competitor RNAs (BRE RNA and nonspecific

RNA) were used at a concentration of 1.5 mM.

GRNA Chromatography

Complexes formed on FLAG BRE-B mRNA were purified according to

a protocol developed by Czaplinski et al. (2005), with modifications.

The protocol is based on the protein-RNA tethering approach using bac-

teriophage l antiterminator protein (lN) and its specific RNA binding site,

boxB (Baron-Benhamou et al., 2004). Per 100 mg of GST-lN fusion

peptide (Czaplinski et al., 2005), 40 ml of a 50% slurry of Glutathione-

Sepharose 4B (Amersham, 17075601) in binding buffer (BB: 20 mM

TRIS-HCl [pH 7.5], 200 mM NaCl, 1.5 mM MgCl2, 9% Glycerol, 0.05%

NP-40, 12 mg/ml heparin) were incubated on an orbital rocker for 1 hr
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at 4ºC. To remove the unbound GST-lN, Glutathione-Sepharose beads

were washed twice in 1 ml of BB and incubated in a reaction mixture

primed with the boxB-containing mRNA diluted with BB 1:10 or in the su-

crose gradient fractions diluted with BB 1:1. For analysis of RNA content

in total extract or in sucrose gradient fractions, we used 30 or 100 ml of

translation mix, respectively. For Western blot analysis of total extract or

sucrose gradient fractions, we used 200 ml or 1ml of translation mix, re-

spectively. Sixty micrograms of GST-lN protein were used per one hun-

dred microliters of translation mixture. After 1 hr of incubation at 4ºC on an

orbital rocker, Glutathione-Sepharose beads were washed three times in

1 ml of BB. For RNA isolation, samples were treated with 20 mg of protein-

ase K in 100 ml 1% SDS 10mM EDTA for 30 min at 30ºC, with shaking.

After a short spin, the supernatant was collected and extracted with Trizol

LS Reagent (Invitrogen 10296028). The isolated RNAs were separated on

a 4% polyacrylamide gel containing 7 M Urea and analyzed by autoradi-

ography. For Western blotting, the RNP complexes bound to Glutathione-

Sepharose were treated with 0.1 mg RNase A in 40 ml BB for 30 min at

30ºC, with shaking. Proteins in the supernatant were separated on

a 10% Laemmli gel and the Western blot probed using anti-Bruno, anti-

Cup, anti-Me31B, and anti-eIF4E antibody.

Supplemental Data

Supplemental data include four figures, Supplemental Results and Dis-

cussion, and Supplemental References and can be found with this article

online at http://www.cell.com/cgi/content/full/124/3/521/DC1/.
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